October 24, 2014

There is a party going on at the ends of microtubules, but I wasn’t invited. That won’t stop me, or countless cell biologists out there, from peeping in the window to check out all of the microtubule shenanigans. Today’s image is from a paper describing how Doublecortin binds to microtubule ends.

The plus end of a microtubule is the primary site for growth and shrinkage, and interaction with several microtubule-associate proteins. Different microtubule end-binding proteins may interact with microtubules using different mechanisms: the end-binding protein EB1 relies on the nucleotide state of the tubulin at the microtubule end, while a recent paper shows how another protein, Doublecortin (DCX), relies on the curvature of microtubule ends for binding. DCX is a neuronal microtubule-associate protein that plays an important role throughout development, yet how it interacted with microtubule ends was previously unclear. Bechstedt and colleagues used single-molecule microscopy to show that DCX (images above, green in merged) binds with higher affinity to curved microtubules (magenta) than to straight microtubules. DCX mutations, which are found in patients with double cortex syndrome, prevent the protein from binding to curved regions of microtubules.

Bechstedt, S., Lu, K., & Brouhard, G. (2014). Doublecortin Recognizes the Longitudinal Curvature of the Microtubule End and Lattice Current Biology, 24 (20), 2366-2375 DOI: 10.1016/j.cub.2014.08.039
Copyright ©2014 Elsevier Ltd. All rights reserved.

No comments:

Post a Comment