I started on my biology journey with my Ranger Rick subscription as a tiny kid (quickly followed by my Fisher-Price microscope). I loved wildlife, and felt heartbreak for declining populations of so many species. Now that I’m trying to pass along this conservation concern and love of animals to my F1, I’m excited to talk about how stem cells may help save the animals!
Some species have too few individuals to allow successful breeding and genetic diversity. For example, the drill is an endangered primate of Africa and the northern white rhinoceros is a critically endangered species with only 7 known individuals (that’s right…not 7 million or 7 thousand, just 7). A recent method paper describes the generation of induced pluripotent stem cells (iPSCs) from both of these endangered species. Ben-Nun and colleagues generated fully reprogrammed iPSC lines from cryopreserved fibroblasts. These cell lines had characteristics of pluripotent cells in other species (ie, alkaline phosphatase activity, Oct4, Sox2, and Nanog). Images above show differentiated embryoid bodies developed from the northern white rhinoceros’ iPSCs. These differentiated cells have markers for all three developmental germ layers, as indicated at the bottom of the image (SMA = smooth muscle actin). Future applications of these iPSCs are truly exciting. In addition to therapeutic uses for sick captive animals, iPSC-derived germ cells can help increase species numbers and diversity (in combination with assisted reproduction).
Friedrich Ben-Nun, I., Montague, S., Houck, M., Tran, H., Garitaonandia, I., Leonardo, T., Wang, Y., Charter, S., Laurent, L., Ryder, O., & Loring, J. (2011). Induced pluripotent stem cells from highly endangered species Nature Methods, 8 (10), 829-831 DOI: 10.1038/nmeth.1706
Adapted by permission from Macmillan Publishers Ltd, copyright ©2011
No comments:
Post a Comment