
Microtubule motors called dynein and kinesin move all sorts of material around the cell. The motor binds to its cargo, a membrane vesicle for example, and “walks” it along a microtubule until it reaches its destination, such as an endosome or lysosome in this example. With multiple motors in any given cell type and a slew of regulators for each, the understanding of an individual motor’s contribution is unclear. A recent paper helps to sort through this complexity. In this paper, Yi and colleagues used acute inhibition of dynein and its regulators, followed by precise tracking of particles in a cell. Following the inhibition of dynein, multiple cargoes rapidly disperse around the cell, suggesting a sharp drop in minus-end directed transport along microtubules. In the images above, the top row shows cells at the time of the dynein inhibition, while bottom row shows several minutes later. Lysosomes/late endosomes, early endosomes, Golgi, and injected adenovirus (left to right) all dispersed towards the cell periphery following dynein inhibition. Interestingly, Yi and colleagues also saw a gradual decrease in transport in the other direction (plus-end directed) following dynein inhibition, suggesting a possible global effect on transport.
No comments:
Post a Comment