Neurons are frequently born far from their final home in the brain, and this migration is key to healthy nervous system development and function. A recent paper shows the importance of primary cilia in the migration of interneurons (neurons that connect one neuron to another) in the cerebral cortex. Primary cilia are microtubule-based sensory organelles that project out of a cell’s membrane. Higginbotham and colleagues imaged migrating interneurons in the developing cerebral cortex and found a correlation between primary cilia dynamics and interneuron mobility. This process requires the ciliary protein Arl13b, a GTPase in the Arf/Arl family. Arl13b ensures correct localization and movement of guidance cue receptors in primary cilia. In the images above, interneurons (green chamber in cartoon, green cells in images) migrate along tracks toward a signal secreted by dorsal cortical cells (blue chamber in cartoon). The migration of Arl13b mutant interneurons (right panel) was drastically reduced when compared to control interneurons (left, same scale).
Copyright ©2012 Elsevier Ltd. All rights reserved.
No comments:
Post a Comment